Contents lists available at SciVerse ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier.com/locate/jmr

Practical choice of ¹H–¹H decoupling schemes in through-bond ¹H–{X} HMQC experiments at ultra-fast MAS

Yusuke Nishiyama ^{a,*}, Xingyu Lu^b, Julien Trébosc^b, Olivier Lafon^b, Zhehong Gan^c, P.K. Madhu^d, Jean-Paul Amoureux^b

^a JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan ^b UCCS (CNRS-8181), Lille North of France University, Villeneuve d'Ascq 59652, France ^c Center of Interdisciplinary Magnetic Resonance, NHMFL, Tallahassee, FL 32310, USA ^d Department of Chemical Sciences, TIFR, Colaba, Mumbai 400 005, India

ARTICLE INFO

Article history: Received 9 June 2011 Revised 5 October 2011 Available online 9 November 2011

Keywords: Solid-state NMR ¹H Very fast MAS 1 mm MAS HMQC CRAMPS

ABSTRACT

Three ¹H–¹H homonuclear dipolar decoupling schemes for ¹H indirect detection measurements at very fast MAS are compared. The sequences require the following conditions: (i) being operable at very fast MAS, (ii) a long T'_2 value, (iii) a large scaling factor, (iv) a small number of adjustable parameters, (v) an acquisition window, (vi) a low rf-power requirement, and (vii) a z-rotation feature. To satisfy these conditions a modified sequence named TIIted Magic-Echo Sandwich with zero degree sandwich pulse (TIMES₀) is introduced. The basic elements of TIMES₀ consist of one sampling window and two phaseramped irradiations, which realize alternating positive and negative 360° rotations of ¹H magnetization around an effective field tilted with an angle θ from the B_0 axis. The TIMES₀ sequence benefits from very large chemical shift scaling factors at ultra-fast MAS that reach κ_{cs} = 0.90 for θ = 25° at v_r = 80 kHz MAS and only four adjustable parameters, resulting in easy setup. Long $\kappa_{cs}T'_2$ values, where T'_2 is a irreversible proton transverse relaxation time, greatly enhance the sensitivity in ¹H-{¹³C} through-bond *I*-HMQC (Heteronuclear Multiple-Quantum Coherence) measurements with ¹H-¹H decoupling during magnetization transfer periods. Although similar sensitivity can be obtained with through-space D-HMQC sequences, in which ¹³C-¹H dipolar interactions are recoupled, J-HMQC experiments incorporating 1 H 1 H decoupling benefit from lower t_{1} -noise, more uniform excitation of both CH, CH₂ and CH₃ moieties, and easier identification of through-bond connectivities.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Sensitivity enhancement by indirect detection of ¹³C and ¹⁵N spectra via ¹H nuclei is a well established method in solution nuclear magnetic resonance (NMR) experiments [1–3]. Since the magnetization is transferred via *J*-coupling, the resulting 2D spectra show through-bond correlations which are useful for resonance assignments. The sensitivity enhancements are due to high natural abundance (\approx 99.99%) and gyromagnetic ratio of ¹H. The narrow line-widths of ¹H nuclei and their long T'_2 values, which are much longer than the magnetization transfer periods, even for small *J* couplings, greatly contribute to sensitivity enhancement. However, high natural abundance and gyromagnetic ratio also lead to strong ¹H–¹H homonuclear dipolar interactions, which are fortunately averaged out by fast isotropic tumbling motions in the solution state. On the other hand, these interactions induce rapid spin diffusion among ¹H nuclei in rigid-solid samples, resulting in short T'_2

relaxation times, typically less than tens of micro-seconds, and in broad ¹H line-widths usually more than 50 kHz under static conditions. These two facts quickly quench ¹H magnetization during the magnetization transfer periods and signal acquisition. Thus, indirect detection via ¹H nuclei in solid state seems not to be as efficient as in solution state, especially if ¹H–¹H interactions are not greatly decreased [4–11].

Decoupling of ${}^{1}\text{H}-{}^{1}\text{H}$ homonuclear dipolar interactions is hence essential to achieve efficient indirect-detection via ${}^{1}\text{H}$ nuclei in solids. Theoretically, ${}^{1}\text{H}-{}^{1}\text{H}$ homonuclear decoupling is easily realized by only applying an infinitely fast magic-angle spinning (MAS) sample rotation. Recently, rotation frequencies have largely increased with the advent of small diameter rotors [12]. However, even at $v_r = 80$ kHz, which is the fastest spinning frequency commercially available now [13], ${}^{1}\text{H}-{}^{1}\text{H}$ interactions still show significant effect on ${}^{1}\text{H}$ line-width and T'_{2} value (see Figs. 2 and 4). Therefore, rf irradiations, as well as MAS, are needed to decouple efficiently these interactions. Numerous ${}^{1}\text{H}-{}^{1}\text{H}$ decoupling schemes have been designed from the early stage of NMR [14–49]. Recently, sophisticated methods were developed by considering rf and mechanical averaging

^{*} Corresponding author. Fax: +81 42 546 8068.

E-mail address: yunishiy@jeol.co.jp (Y. Nishiyama).

^{1090-7807/\$ -} see front matter \odot 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jmr.2011.10.014

simultaneously [25-32]. Synchronized [29-32] or non-synchronized [33,34,38-41] Combined Rotation And Multiple Pulse Spectroscopy (CRAMPS) methods with ultra-fast MAS above $v_r = 60 \text{ kHz}$ have been introduced, including SAM [29–31], RN_n^{ν} [32], wPMLG^{xx}_{pp} [33], eDUMBO [38,40], and TIMES [41]. All of these rf-assisted ¹H⁻¹H decoupling methods suppress ¹H⁻¹H dipolar interactions, but inevitably introduce scaling down of ¹H isotropic chemical shifts, as well as of ${}^{13}C-{}^{1}H$ *J*-couplings, by a factor of κ_{cs} . As CRAMPS direct ¹H signal acquisition introduces a large additional noise and artifacts, very fast MAS alone is frequently preferred for line-narrowing in the direct ¹H dimension [5,50–52]. To our knowledge, no measurement of T'_2 enhancement by ¹H–¹H dipolar decoupling during magnetization transfer periods has been reported for ¹³C indirect detection in fast MAS through-bond ¹H-{¹³C} correlation experiments. Although, this T'_2 enhancement has been demonstrated in the ¹³C direct detection scheme at moderate MAS frequencies [53].

In this article, we investigate the ¹H–¹H decoupling schemes during the magnetization transfer periods in through-bond ¹H-{¹³C} correlation experiments with indirect ¹³C observation via ¹H nuclei. The decoupling scheme should: (i) work well at very fast MAS to narrow the ¹H line-widths, (ii) enhance the T'_{2} relaxation time to reduce signal decay during the magnetization transfer periods, and (iii) show a large scaling factor to shorten the magnetization transfer periods. In addition to these features, it is preferable that the decoupling scheme presents several additional features: (iv) a small number of parameters to be optimized, (v) an acquisition window enabling a direct 1D observation during optimization, (vi) a moderate rf power requirement, and (vii) an effective global precession of the spins around B_0 , usually called a *z*-rotation. Features (iv) and (v) enable a fast optimization of experimental parameters by directly observing 1D spectra. Features (vi) and (vii) are preferable to avoid sample heating and artificial modulations due to zero or symmetrical false ¹H peaks, respectively. Usually, feature (vii) presents the disadvantage of reducing the scaling factor; but it has experimentally been found that this is not the case for very fast MAS [49], as shown below.

First, we investigate two ${}^{1}H{-}{}^{1}H$ decoupling schemes, wPMLG^{xx}_{pp} and TIMES, at very fast MAS. We also introduce a new version of TIMES, named TIMES₀, in which the sandwich pulses are removed, thus leading to favorable features for ${}^{1}H{-}{}^{13}C$ *J*-HMQC (Heteronuclear Multiple-Quantum Coherence) experiments at ultra-fast MAS. To conclude, we compare two different ${}^{1}H{-}{}^{13}C$ indirect HMQC observations, either based on through-bond or on through-space correlations.

2. ¹H–¹H homonuclear decoupling schemes

In the article, we focus on three windowed non rotor-synchronized ¹H-¹H decoupling schemes: wPMLG^{xx}_{pp}, TIMES and TIMES₀ (Fig. 1a). Indeed, these sequences work well at very fast MAS, enhance the T'_2 relaxation time, have an acquisition window, and offer an effective *z*-rotation for ¹H magnetization [33,41]. The gray sandwich pulses are removed in wPMLG^{xx}_{pp} and TIMES₀, and hence, experimentally their pulse sequences are similar. However, as shown below, the two basic concepts of wPMLG_{pp}^{x\bar{x}} and TIMES₀ sequences are very different and their optimizations do not only correspond to a re-parameterization process. In the three sequences the magnetization is rotated during each τ_p period with an angle ψ around the effective field, which is tilted from the B_0 axis by the angle θ . Every cycle period, $\tau_c = 2(\tau_p + \tau_{\theta}) + \tau_w$, the global rotation is cancelled in each R or \overline{R} unit, since the direction of the rotation in the second τ_p period is reversed. Thus, the interaction frame of the rf-field is coincident with the rotating frame in each sampling window, τ_w , where the NMR signal is sampled. An

effective *z*-rotation for the magnetization is achieved by applying two effective fields symmetrical with respect to B_0 during two consecutive τ_c periods [46–48]. The major difference between these methods is the ψ angle value and the presence or absence of sandwich pulses. These sequences are summarized in Table 1.

Let's first analyze the wPMLG^{xx}_{pp} sequence, which is composed with the R (wPMLG^x_p) and \overline{R} (wPMLG^x_p) units. Each unit was originally designed by adding an acquisition window to the windowless PMLG sequence, which is essentially the same as the Frequency-Switched Lee–Goldburg (FSLG) sequence [20]. In FSLG, the tilt of the effective field is achieved by an off-resonance irradiation at v_{off} frequency, whereas PMLG employs an on-resonance irradiation and the tilt of the effective field results from a sweep of the rf phase from 0 to ϕ_{last} [22]:

$$\phi_{\text{last}}(^{\circ}) = 360 \cdot v_{\text{off}} \cdot \tau_{\text{p}},\tag{1}$$

where τ_p is the length of the ramped on-resonance irradiation. The rotation angle ψ about the effective field during τ_p is described by:

$$\psi(^{\circ}) = 360 \cdot v_{\text{eff}} \cdot \tau_{\text{p}} = 360 \cdot \sqrt{v_{1\text{p}}^2 + v_{\text{off}}^2} \cdot \tau_{\text{p}}$$
$$= \sqrt{(360v_{1\text{p}}\tau_{\text{p}})^2 + \phi_{\text{last}}^2}, \qquad (2)$$

where v_{1p} is the strength of the on-resonance B_1 field during the phase ramp. v_{eff} is the strength of the effective field, which is tilted by the angle θ with respect to the B_0 magnetic field:

$$\tan \theta = \frac{v_{1p}}{v_{\text{off}}}.$$
(3)

 $\theta = \theta_{\rm m} = 54.74^{\circ}$ is used in FSLG and PMLG to achieve the Lee–Goldburg condition, and the theoretical length of the phase ramp irradiation is chosen to achieve a full $\psi = 360^{\circ}$ rotation about the effective field, thus leading to $\tau_{\rm p} = 1/v_{\rm eff} = 1/\left(v_{\rm off}^2 + v_{\rm 1p}^2\right)^{1/2}$ and $\phi_{\rm last} = 208^{\circ}$. In practice, wPMLG^{xx}_{pp} is experimentally optimized by changing $\tau_{\rm p}$, while keeping the phase ramp final value of $\phi_{\rm last} = 208^{\circ}$. This optimization leads to a concurrent variation of the offset frequency, $v_{\rm off}$, and of the θ and ψ angles. Indeed, after optimization, the experimentally optimized $\tau_{\rm p}$ value tends to become shorter than its theoretical value [54], which corresponds to a θ angle smaller than $\theta_{\rm m}$ (Eqs. (1), (3)), and to a ψ angle smaller than 360° (Eq. (2)).

With TIMES and TIMES₀, the effective rotation is always kept equal to $\psi = 360^{\circ}$ by changing not only the length of the on-resonance irradiation, but also simultaneously the phase sweep value (Eq. (2)) to:

$$\phi_{\text{last}}(^{\circ}) = 360. \left(1 - \tau_p^2 v_{1p}^2\right)^{1/2}.$$
(4)

The length of sandwich pulses in TIMES is experimentally optimized, but the flip angle of these pulses is always found to be close to the θ value described with Eq. (3). These pulses hence align the *z* axis of the precession axis, tilted with the phase ramp, with the B_0 field. Under fast MAS, these two axes tend to be very close, and therefore the two sandwich pulses can be dropped, thus leading to the TIMES₀ sequence.

It is important to reduce experimentally the number of optimized parameters for quick, stable, and reproducible experimental setup. There are six experimentally adjustable parameters in TIMES: the lengths of sandwich pulses, τ_0 , of ramp pulses, τ_p , and of window, τ_w , as well as the amplitudes of rf fields during sandwich pulses, v_{10} , and ramp pulses, v_{1p} , and the resonance offset frequency Δv_0 . On the other hand, only four parameters (τ_p , v_{1p} , Δv_0 , τ_w) have to be optimized for wPMLG^{xx}_{pp} and TIMES₀ sequences.

As the interaction and rotating frames coincide every τ_c , the isotropic chemical shift scaling factor can be analytically calculated with first-order average Hamiltonian:

Fig. 1. (a) General pulse scheme for wPMLG^{xx}_{pp}, TIMES, and TIMES₀. NMR signals are sampled during every window at the points indicated by asterisk. *z*-Rotation is obtained by applying two rotations (R and \overline{R}) about two axes symmetrical with respect to B_0 . Sandwich gray pulses are omitted in wPMLG^{xx}_{pp} and TIMES₀. The nutation angles of hard pulses are indicated at the top of each of them and the phases are indicated inside each pulse. The final phase ϕ_{last} is calculated according to Eq. (4) for TIMES and TIMES₀ and is fixed to 208° for wPMLG^{xx}_{pp}. The rf-field strength for sandwich pulses is v_{10} and that for ramp pulses is v_{1p} . (b) 1D ¹H NMR pulse sequence. (c) Hahn echo sequence to measure T'_2 under ¹H decoupling. (d) ¹H–{¹³C} D-HMQC and J-HMQC pulse sequences.

Table 1Differences in between wPMLG $p_{pp}^{x\bar{x}}$, TIMES, and TIMES₀.

	wPMLG ^{xx} _{pp}	TIMES	TIMES ₀
ψ	<360°	360°	360°
ϕ_{last}	208°	Eq. (2)	Eq. (2)
Sandwich pulse	No	Yes	No
Scaling factor	Eq. (5)	Eq. (6)	Eq. (5)

$$\kappa_{\rm cs} = \frac{2\tau_{\rm p}\cos^2\theta + \tau_{\rm w}}{\tau_{\rm c}},\tag{5}$$

for wPMLG^{$x\bar{x}$} and TIMES₀, and

$$\kappa_{\rm cs} = \frac{\frac{2\tau_{\theta}\sin\theta}{\theta} + 2\tau_{\rm p}\cos\theta\cos2\theta + \tau_{\rm w}}{\tau_{\rm c}},\tag{6}$$

for TIMES if the effect of the sandwich pulses are taken into account [41]. The effect of sample spinning is not included in this calculation, since the isotropic chemical shift is not affected by MAS. Thus, we can safely apply these equations even if the cycle time of the sequence is close to that of sample spinning.

3. Experimental

The experiments were performed at 14.1 T with a JEOL JNM-ECA 600 system equipped with a JEOL 1.0 mm double resonance MAS probe. The spinning speed was actively stabilized with a pneumatic solenoid valve so that the spinning fluctuations, averaged over 1 s, are less than 10 Hz. However, a detailed oscilloscope analysis shows that instantaneous fluctuations can increase up to c.a. 30 Hz, especially at ultra-fast speed (e.g. 75–80 kHz). Each phase-ramp pulse was divided into five stripes, with length τ_p /5. Glycine and uniformly ¹³C, ¹⁵N labeled L-alanine samples were purchased from Tokyo Chemical Industry Ltd. and Cambridge Isotope Laboratories, respectively, and used as received without further purification or re-crystallization. All experiments were performed with full rotor samples, without any spacer.

The experimental parameters for direct observation of 1D ¹H spectra (Figs. 2 and 3) were optimized so as to achieve the best

Fig. 2. ¹H spectra of glycine without (a) and with (b–d) ¹H decoupling at $v_r = 80$ kHz MAS. (b–d) Scaled up spectra recorded with (b) wPMLG^{xx}_{pp}, (c) TIMES, and (d) TIMES₀. The frequency scale was divided by the experimentally determined scaling factor to restore the actual chemical shift values. The optimized parameters are $(\tau_p, \tau_w, \tau_0, \tau_c, \phi_{last}, \theta, \psi) = (2.80, 4.84, 0, 10.44 \, \mu s, and 208°, 31°, 243°) for wPMLG^{xx}_{pp}, (3.10, 4.82, 0.22, 11.46 <math>\mu s$, and 332°, 23°, 360°) for TIMES, and (3.40, 4.72, 0, 11.52 μs , and 326°, 25°, 360°) for TIMES₀.

separation of the two methylene signals of glycine. The rfstrengths were fixed to $v_{10} = v_{1p} = 125$ kHz, which normally give the best resolution for our spectrometer. The optimization was started on-resonance ($\Delta v_0 = 0$), with $\tau_w = 4.8 \,\mu$ s, and either $\tau_0 = 0$ for wPMLG^{xx}_{pp} and TIMES₀, or $\tau_0 = \theta/2\pi v_{10}$ for TIMES. First, τ_p was varied with 100 ns step which corresponds to 20 ns change for each stripe. Then, τ_{θ} (for TIMES), τ_w , and Δv_0 were finely optimized. The final value of the phase ramp (ϕ_{last}) was not optimized and was either fixed to 208° for wPMLG^{xx}_{pp} or directly calculated with Eq. (4) for TIMES and TIMES₀.

Fig. 3. Experimentally measured (open symbols: Δ , \bigcirc , \Box) and theoretically calculated (filled symbols: \blacktriangle , \blacklozenge , \blacksquare) κ_{cs} scaling factors for wPMLG^{xz}_{pp} (\Box , \blacksquare), TIMES (\bigcirc , \blacklozenge), and TIMES₀ (Δ , \blacktriangle) homonuclear decoupling at various spinning frequencies.

Fig. 4. ¹H $\kappa_{cs}T'_{2}$ averaged value for the two CH₂ protons of glycine at various spinning frequencies. $\kappa_{cs}T'_{2}$ values are obtained without (\heartsuit ; κ_{cs} = 1, T'_{2}), or with wPMLG^{XV}_{pp} (\square), TIMES (\bigcirc), and TIMES₀ (Δ) ¹H–¹H decoupling.

Fig. 5. ¹H–{¹³C}*J*-HMQC-filtered CH signal intensity in uniformly ¹³C, ¹⁵N labeled Lalanine without (\triangledown ; κ_{cs} = 1), or with wPMLG^{xx}_{pp} (\square), TIMES (\bigcirc), and TIMES₀ (Δ) ¹H–¹H decoupling at various spinning frequencies. The ¹H–{¹³C} *D*-HMQC results obtained with SR4²₁ recoupling are also shown (\diamondsuit). To achieve a passive rotorsynchronization, we have added a one-rotor delay between SR4²₁ blocks and ¹³C 90° pulses. The experimental conditions were always optimized to maximize the CH signal intensity. The signal intensities are normalized with respect to that without homonuclear decoupling at MAS of 20 kHz.

For the 1D and 2D *J*-HMQC spectra (Figs. 5 and 6), the optimization for the ¹H–¹H decoupling started from the values used in Fig. 3 as initial conditions. The parameters were then further optimized with the same order as for 1D experiments, but to maximize the CH peak intensity in *J*-HMQC filtered ¹H spectra. Here, a ¹H-{¹³C} *J*-HMQC filtered 1D experiment denotes a ¹H-{¹³C} *J*-HMQC experiment with a null indirect evolution period, $t_1 = 0$. Finally, the magnetization transfer period, τ_t , was also experimentally optimized for each sequence.

4. Results and discussion

In this section, we evaluate wPMLG^{$x\bar{x}$}_{pp}, TIMES, and TIMES₀ in view of points (i–vii) described in Section 1 (summarized in Table 2). It must be first noted that these sequences are designed to have an acquisition window (v) and an effective *z*-rotation (vii).

4.1. 1D spectra

We first observe 1D ¹H NMR spectra of glycine, recorded with the sequence shown in Fig. 1b at the speed of $v_r = 80$ kHz, to evaluate points (i and ii), the ¹H–¹H decoupling efficiency and T'_2 value at ultra-fast MAS and (iii) the scaling factor. Spectra are shown in Fig. 2, with (b–d) and without (a) ¹H–¹H decoupling. The ¹H rf-field strength of $v_{1p} = v_{10} = 125$ kHz was applied to satisfy point (vi), that is, a moderate rf power requirement. For all the decoupling sequences, a much stronger rf-field of $v_{1p} \approx 238$ kHz always results in inferior resolution (not shown) [55]. This experimental result demonstrates that large rf-field is not mandatory to achieve efficient homonuclear decoupling under ultra-fast MAS. Note that ¹H decoupling gives a much better resolution than ultra-fast MAS alone, even at $v_r = 80$ kHz, especially for the two methylene resonances. At that MAS frequency, the three sequences work well with similar ¹H resolution as shown in Fig. 2b–d, which shows that requirement (i) is satisfied.

At ultra-fast MAS, a short cycle time is the key point to achieve ¹H high resolution, and the cycle time must be shorter than one rotor period [39]; whereas this condition does not lead to good resolution at moderate MAS frequencies [55,56]. In Fig. 2b-d, the cycle times for wPMLG^{xx}_{pp}, TIMES, and TIMES₀ spectra show similar values of $\tau_{\rm c}$ = 10.44, 11.46 and 11.52 µs, respectively, and are all shorter than one MAS rotor period of τ_r = 12.5 µs. All the other experimentally optimized parameters are given in the figure caption. TIMES and TIMES₀ decoupling benefit from larger scaling factor κ_{cs} than wPMLG_{nn} at $v_r = 80$ kHz (see Fig. 3). The larger scaling factors result from smaller θ angles (see Eqs. (4) and (5)). Assuming $\phi_{\text{last}} = 208^{\circ}$ with the experimentally optimized parameters, the calculated rotation angle about the effective field (Eq. (2)) would result in very similar values of ψ = 243°, 250°, and 258° for wPMLG^{xx}_{pp}, TIMES, and TIMES₀. However, TIMES and TIMES₀ impose a ψ = 360° rotation, which is obtained by increasing the effective field v_{eff} , due to further off resonance irradiation v_{off} than wPMLG^{xx}_{pp}; this is done by imposing ϕ_{last} values calculated according to Eq. (4). Even with keeping the same v_{1p} value, the large v_{off} values in TIMES and TIMES₀ result in smaller θ angle (Eq. (3)) than that in wPMLG^{xx}_{pp}, leading to enhanced scaling factor (Eqs. (5), (6)). It should be noted that short τ_c values also enhance the sensitivity by increasing the duty cycle of acquisition windows. The experimental scaling factors are represented with open symbols versus spinning frequency in Fig. 3. For each MAS frequency, the parameters have been optimized to achieve the best resolution before measuring the scaling factors. These are obtained from the difference between the NH₃⁺ signal and the middle of the two CH₂ resonances. At ultra-fast MAS, $v_r = 80$ kHz, the requirement of large scaling factor (iii) is satisfied for the three sequences, especially TIMES and TIMES₀ which give the largest scaling

Fig. 6. ¹H–{¹³C} (a) *J*-HMQC and (b) *D*-HMQC spectra at $v_r = 70$ kHz of uniformly ¹³C, ¹⁵N labeled L-alanine. TIMES₀ with $\tau_t = 2.02$ ms and SR4¹₁ with $\tau_t = 57$ µs were applied on the ¹H channel during the magnetization transfer periods of *J*-HMQC and *D*-HMQC experiments, respectively. The 2D spectra are plotted with the same contour levels. The (c) ¹H and (d) ¹³C slices of the CH signal, which is indicated by the arrows in (a) and (b), are also shown at the same scale. The insets are magnifications of the slices with a factor of 10. The through-space correlations are indicated by asterisk in *D*-HMQC spectra.

Table 2	
Requirements of ¹ H– ¹ H decoupling schemes for ¹ H indirect detection.	

	wPMLG ^{xx}	TIMES	TIMES ₀
(i) Works at 80 kHz MAS?	Yes	Yes	Yes
(ii) <i>T</i> ['] ₂ (ms)	3.43	2.67	3.45
$(\kappa_{\rm cs}T_2')$ (ms)	2.81	2.40	3.11
(iii) Scaling factor κ_{cs}	0.82	0.90	0.90
(iv) Number of parameters	4	6	4
(v) Acquisition window	Yes	Yes	Yes
(vi) rf power v_{1p} (kHz)	125	125	125
(vii) z-rotation	Yes	Yes	Yes

factor of $\kappa_{cs} = 0.90$, while wPMLG^{xx}_{pp} gives a slightly smaller value of $\kappa_{cs} = 0.82$. This scaling factor can also be calculated with Eqs. (5), (6) and experimentally optimized τ_{p} , θ , τ_{w} , and τ_{c} values. The results are plotted as filled symbols in Fig. 3, and they agree well with experimental results.

The proton T'_2 value, which is observed by Hahn echo MAS experiments, increases linearly with the spinning frequency (Fig. 4). Further enhancement of T'_2 value is achieved by applying ¹H decoupling during the echo. The corresponding pulse sequence is depicted in Fig. 1c. Here, we compare their *effective* values $\kappa_{cs}T'_2$ for various decoupling schemes. Since ¹H chemical shifts and J_{13C-1H} scalar couplings are both scaled by the factor κ_{cs} , $\kappa_{cs}T'_2$ represents the actual effect of signal decay in re-scaled spectra. All three sequences well decouple ¹H-¹H interactions, leading to much longer $\kappa_{cs}T'_2$ values than the T'_2 without decoupling, as shown in Fig. 4. Especially, TIMES₀ gives the longest $\kappa_{cs}T'_2$ at 80 kHz MAS, hence satisfying the requirement (ii). In spite of large scaling factor, TIMES shows the

shortest $\kappa_{cs}T'_2$ value. This may be due to the effect of sandwich pulses [55]. This unfavorable effect is removed in TIMES₀ sequence.

The experimental characters of the wPMLG^{xx}_{pp}, TIMES, and TIMES₀ sequences are listed in (Table 2) in terms of the requirements (i)–(vii). For ease of optimization, wPMLG^{xx}_{pp} and TIMES₀ are better than TIMES because the formers have two less parameters than the latter. The longest $\kappa_{cs}T'_2$ value is realized by TIMES₀, leading to maximum sensitivity in ¹H detected experiments (Table 2).

4.2. HMQC spectra

The sensitivity enhancement in HMQC experiments involving coherence transfer via *J* coupling (Fig. 1d) is experimentally demonstrated by Fig. 5, which displays the ¹H–(¹³C)*J*-HMQC filtered ¹H signal intensity of the CH peak in uniformly ¹³C, ¹⁵N labeled L-alanine versus spinning frequency. At 80 kHz speed, ¹H–¹H decoupling irradiation leads to a 2–2.5 sensitivity enhancement with respect to the signal observed without ¹H decoupling. The maximum enhancement is achieved by TIMES₀ because of its longest $\kappa_{cs}T'_2$ value as predicted from the above discussion. Although the re-scaled linewidths are similar to each other (Fig. 2), the large scaling factors of TIMES and TIMES₀ give a significant enhancement in the *J*-HMQC filtered ¹H NMR signal intensity.

Similar sensitivity enhancement can be realized by applying a ${}^{13}C{}^{-1}H$ dipolar recoupling sequence. The re-introduction of large D_{13C-1H} dipolar interactions may lead to much faster magnetization transfer between ${}^{13}C$ and ${}^{1}H$ than with small J_{13C-1H} scalar couplings. We have also tested this experiment, which is called *D*-HMQC, by applying the SR4²₁ recoupling scheme on the proton channel [57,58]. This sequence also presents the advantage of suppressing

the contribution of ¹H–¹H dipolar interactions to the first-order average Hamiltonian. The ${}^{1}H^{-}{}^{13}C$ D-HMQC and J-HMQC experiments are then very similar and they only differ by the sequence which is applied in the ¹H channel (Fig. 1d). Since the recoupled ¹³C-¹H dipolar dephasing depends on the initial rotor-phase, the two SR4² dipolar recoupling periods in the D-HMQC sequence must be perfectly rotor-synchronized. The D-HMQC data obtained at v_r = 80 kHz are not shown because the signal intensity was not reproducible due to too large spinning speed fluctuations. Indeed, even a small fluctuation of the instantaneous spinning frequency induces imperfect echo formations [13,59,60]. At $v_r = 70$ kHz the fluctuations are much smaller, and the D-HMQC sequence then provides the largest signal intensity among the HMQC filtered $(t_1 = 0)$ ¹H spectra (Fig. 5). Nevertheless, the J-HMQC experiment with TIMES₀ decoupling results in further signal enhancement at $v_r = 80$ kHz, because coherence transfers via scalar couplings are not affected by MAS frequency fluctuations.

We have recorded the ¹H-{¹³C}D-HMQC and /-HMQC 2D spectra with $SR4_1^2$ recoupling and TIMES₀ decoupling, respectively, at v_r = 70 kHz where the spinning frequency was stable enough to observe D-HMQC signal. The two spectra are plotted in Fig. 6 with the same contour levels. ¹³C and ¹H slices of the CH peak are also shown with the same vertical scale. As already observed in Fig. 5, the comparison of the slices in Fig. 6c and d shows a slight enhancement in the intensity of CH peak in favor of D-HMQC method using $SR4_1^2$ recoupling compared to J-HMQC sequence incorporating TIMES₀ homonuclear decoupling. However, it is also clear from Fig. 6d that *D*-HMQC slices exhibit a much stronger t_1 -noise along the ¹³C dimension (indirect dimension) than J-HMQC owing to MAS frequency fluctuations. Indeed, it can be noted that the noise intensity in the ¹³C slices of D-HMQC spectrum (see Fig. 6d right) is significantly stronger than in the ¹H slice (see Fig. 6c right), whereas no significant difference in noise level is observed between the two spectral dimensions of J-HMQC spectrum using TIMES₀ decoupling (compare Fig. 6c,d left). This strong t_1 -noise, due to SR4²₁, negates the slight signal enhancement observed in D-HMQC. J-HMQC spectra are more useful than *D*-HMOC spectra for spectral assignments. since they only display through-bond correlations, whereas D-HMQC spectra show through-space correlations. We can clearly see several through-space correlations (indicated by *) in D-HMQC spectra (Fig. 6b), which do not appear with J-HMQC sequence (Fig. 6a).

The build-up curves observed at $v_r = 70$ kHz, versus the length τ_t of each recoupling period are shown in Fig. 7. They are dominated by two competing effects: the T'_2 or $\kappa_{cs}T'_2$ relaxation coefficient and the magnetization transfer rate. The transfer rate is solely determined by the size of the recoupled interaction between ¹³C and ¹H for both CH and CH₃ groups, in which the spins behave just as a summation of CH systems in the case of ¹H observation [61]. In D-HMQC, the maximum signal intensity of CH is observed at around $\tau_t \approx 57 \ \mu s$ (Fig. 7c), which is close to the theoretical value of $\tau_t \approx 70 \ \mu s$ [62]. The optimal condition for CH₃ is very different from that for CH and close to $\tau_t \approx 143 \ \mu s$ (Fig. 7d). This is because of the smaller dipolar interaction in CH₃, which is one-third that in CH owing to the fast rotation of the methyl group. On the other hand, J-couplings, which drive the magnetization transfer in J-HMQC experiments, have similar values of $J_{13C-1H} \approx 140$ Hz both for CH and CH₃ groups since they are not affected by the rotation of the methyl group. This results in the fact that the maximum signal intensity is obtained at the same $\tau_{\rm t}$ value both for CH and for CH₃ groups (Fig. 7a and b). The optimal condition of $\tau_t \approx 2.0 \mbox{ ms}$ is smaller than the theoretical value of $\tau_{t} \approx 0.5/\kappa_{cs}J_{13C-1H}) \approx 4.2$ ms. This decrease shows that the $\kappa_{cs}T_{2}'$ value of 2-3 ms (Fig. 4) still has significant effect on build up curve in J-HMQC experiments. The difference between D-HMQC and J-HMQC build-up curves can also be observed in Fig. 6. Indeed, since the $\tau_{\rm t}$ values have been optimized to maximize the CH intensity, much

Fig. 7. ¹H–{¹³C} HMQC-filtered ¹H NMR signal intensity of uniformly ¹³C, ¹⁵N labeled L-alanine as function of τ_t time at $\nu_r = 70$ kHz. TIMES₀ decoupling (*J*-HMQC; a and b) and SR4²₁ recoupling (*D*-HMQC; c and d) were applied during magnetization transfer periods. The signal intensities of CH (a and c) and CH₃ (b and d) are shown.

weaker CH_3 signal appear in *D*-HMQC (Fig. 6b) than in *J*-HMQC (Fig. 6a). *J*-HMQC should thus be preferred to *D*-HMQC to obtain a more uniform excitation.

5. Conclusions

We have demonstrated three ¹H–¹H homonuclear dipolar decoupling sequences for enhancing the magnetization transfer efficiency between ¹³C and ¹H in the ¹H–{¹³C} *J*-HMQC experiments. Indeed, in addition to wPMLG^{xx}_{pp} and TIMES sequences, we have proposed another TIMES version without the bracketing pulses, named TIMES₀. This simplification can be safely applied only at very fast MAS regime where the bracketing pulses become negligible with small θ . In the TIMES and TIMES₀ sequences, the angle θ between the magnetic field and the effective field is adjusted, while keeping the rotation angle about the effective field fixed to ψ = 360°. When the effective field tends to align with the B_0 field, the chemical shift scaling factor κ_{cs} increases at the expense of a wider line-width since the suppression of ¹H–¹H dipolar interaction becomes less efficient. The best compromise in terms of resolution is thus obtained experimentally by optimizing the θ value. Since the phase ramp is systematically calculated from equations, TIMES₀ does not introduce any additional adjustable parameter compared to wPMLG^{$x\bar{x}$} At ultra-fast MAS $(v_r = 80 \text{ kHz})$, which is presently the fastest commercially available speed, and with the moderate rf-field strength of c.a. 120–130 kHz, TIMES and TIMES₀ benefit from the very large chemical-shift scaling factors of κ_{cs} = 0.90, as well as from a high resolution comparable to that observed with wPMLG^{$x\bar{x}$}_{pp}. TIMES₀, which has the advantage of only four adjustable parameters for easy setup, is suitable for ¹H-{¹³C} through-bond *I*-HMOC measurements at ultra-fast MAS in terms of large scaling factor, and efficient homonuclear decoupling. Although similar sensitivity enhancement can be obtained with through-space D-HMQC experiments, J-HMQC spectra incorporating ¹H-¹H decoupling have the advantages of lower t_1 -noise and more uniform excitation of both CH, CH₂ and CH₃ groups. Furthermore, J-HMQC provides unambiguous ¹³C-¹H through-bond correlations, which help spectral assignment.

Acknowledgments

Authors are grateful for funding provided by Region Nord/Pas de Calais, Europe (FEDER), CNRS, French Minister of Science, USTL, ENSCL, and CortecNet. Financial support from the TGIR RMN THC (FR-3050) for conducting the research is gratefully acknowledged.

References

- A.A. Maudsley, L. Müller, R.R. Ernst, Cross-correlation of spin-decoupled NMR spectra by heteronuclear two-dimensional spectroscopy, J. Magn. Reson 28 (1977) 463–469.
- [2] L. Müller, Sensitivity enhanced detection of weak nuclei using heteronuclear multiple quantum coherence, J. Am. Chem. Soc. 101 (1979) 4481–4484.
- [3] A. Bax, R.H. Griffey, B.L. Hawkins, Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR, J. Magn. Reson. 55 (1983) 301-315.
- [4] J.W. Wiench, C.E. Bronnimann, S.Y. Victor, M. Pruski, Chemical-shift correlation NMR spectroscopy with indirect detection in fast rotating solids: studies of organically functionalized mesoporous silicas, J. Am. Chem. Soc. 129 (2007) 12076.
- [5] Y. Ishii, R. Tycko, Sensitivity enhancement in solid state ¹⁵N NMR by indirect detection with high-speed magic angle spinning, J. Magn. Reson. 142 (2000) 199–204.
- [6] D.H. Zhou, J.J. Shea, A.J. Nieuwkoop, W.T. Franks, B.J. Wylie, C. Mullen, D. Sandoz, C.M. Rienstra, Solid-state protein-structure determination with proton-detected triple-resonance 3D magic-angle-spinning NMR spectroscopy, Angew. Chem. Int. Ed. 46 (2007) 8380.
- [7] Donghua, H. Zhou, G. Shah, M. Cormos, C. Mullen, D. Sandoz, C.M. Rienstra, Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning, J. Am. Chem. Soc. 129 (2007) 11791–11801.
- [8] I. Schnell, B. Langer, S.H.M. Sontjens, M.H.P. van Genderen, R.P. Sijbesma, H.W. Spiess, Inverse detection and hetero-nuclear editing in ¹H⁻¹⁵N correlation and ¹H⁻¹H double-quantum NMR spectroscopy in the solid state under fast MAS, J. Magn. Reson. 150 (2001) 57–70.
- [9] I. Schnell, K. Saalwachter, ¹⁵N-¹H bond length determination in natural abundance by inverse detection in fast-MAS solid-state NMR spectroscopy, J. Am. Chem. Soc. 124 (2002) 10938–10939.
- [10] Y. Ishii, J.P. Yesinowski, R. Tycko, Sensitivity enhancement in solid-state ¹³C NMR of synthetic polymers and biopolymers by ¹H NMR detection with high-speed magic angle spinning, J. Am. Chem. Soc. 123 (2001) 2921–2922.
- [11] H. Donghua, D. Zhou, C.M. Rienstra, Rapid analysis of organic compounds by proton-detected hetero-nuclear correlation NMR spectroscopy with 40 kHz magic-angle spinning, Angew. Chem. Int. Ed. 47 (2008) 7328–7331.
- [12] A. Samoson, T. Tuherm, J. Past, A. Reinhold, T. Anupold, I. Heinmaa, New horizons for magic-angle spinning NMR, Top. Curr. Chem. 246 (2004) 15–31.
- [13] Y. Nishiyama, Y. Endo, T. Nemoto, H. Utsumi, K. Yamauchi, K. Hioka, T. Asakura, Very fast magic angle spinning ¹H-¹⁴N 2D solid-state NMR: sub-micro-liter sample data collection in a few minutes, J. Magn. Reson. 208 (2011) 44–48.
- [14] P. Hodgkinson, High-resolution ¹H NMR spectroscopy of solids, Annu. Rep. NMR Spec. 72 (2011) 185–223.
- [15] W.I. Goldburg, M. Lee, Nuclear magnetic resonance line narrowing by a rotating rf field, Phys. Rev. Lett. 11 (1963) 255–258.
- [16] M. Lee, W.I. Goldburg, Nuclear-magnetic-resonance line narrowing by a rotating rf field, Phys. Rev. 140 (1965) 1261.
- [17] J.S. Waugh, L.M. Huber, Method for observing chemical shifts in solids, J. Chem. Phys. 47 (1967) 1862–1863.
- [18] J.S. Waugh, L.M. Huber, U. Haeberlen, Approach to high-resolution NMR in solids, Phys. Rev. Lett. 20 (1968) 180–182.
- [19] K. Takegoshi, C.A. McDowell, A "Magic Echo" pulse sequence for the highresolution NMR spectra of abundant spins in solids, Chem. Phys. Lett. 116 (1985) 100.
- [20] A. Bielecki, A.C. Kolbert, M.H. Levitt, Frequency-switched pulse sequences: homonuclear decoupling and dilute spin NMR in solids, Chem. Phys. Lett. 155 (1989) 341–346.
- [21] B.M. Fung, K. Ermolaev, Y. Yu, ¹³C NMR of liquid crystals with different proton homonuclear dipolar decoupling methods, J. Magn. Reson. 138 (1999) 28–35.
- [22] E. Vinogradov, P.K. Madhu, S. Vega, High-resolution proton solid-state NMR spectroscopy by phase modulated Lee–Goldburg experiment, Chem. Phys. Lett. 314 (1999) 443–450.
- [23] B.C. Gerstein, R.G. Pembleton, R.C. Wilson, L.M. Ryan, High resolution NMR in randomly oriented solids with homonuclear dipolar broadening: combined multiple pulse NMR and magic angle spinning, J. Chem. Phys. 66 (1977) 361– 362.
- [24] B.C. Gerstein, in: D.M. Grant, R.K. Harris (Eds.), Encyclopedia of Nuclear magnetic Resonance, Wiley, New York, 2002.
- [25] D.E. Demco, S. Hafner, H.W. Spiess, Rotation-synchronized homonuclear dipolar decoupling, J. Magn. Reson. A 116 (1995) 36–45.
- [26] P.K. Madhu, X. Zhao, M.H. Levitt, High-resolution ¹H NMR in the solid state using symmetry-based pulse sequences, Chem. Phys. Lett. 346 (2001) 142–148.
- [27] S. Paul, R.S. Thakur, P.K. Madhu, ¹H homonuclear decoupling at high magicangle spinning frequencies with rotor-synchronized symmetry sequences, Chem. Phys. Lett. 456 (2008) 253–256.
- [28] S. Paul, R.S. Thakur, M.H. Levitt, P.K. Madhu, ¹H homonuclear dipolar decoupling using rotor-synchronized pulse sequences: towards pure absorption phase spectra, J. Magn. Reson. 205 (2010) 269–275.
 [29] J.-P. Amoureux, B. Hu, J. Trébosc, Enhanced resolution in proton solid-
- [29] J.-P. Amoureux, B. Hu, J. Trébosc, Enhanced resolution in proton solidstate NMR with very-fast MAS experiments, J. Magn. Reson. 193 (2008) 305– 307.

- [30] J.-P. Amoureux, B. Hu, J. Trébosc, Q. Wang, O. Lafon, F. Deng, Homonuclear dipolar decoupling schemes for fast MAS, Solid State Nucl. Magn. Reson. 35 (2009) 19–24.
- [31] O. Lafon, Q. Wang, B. Hu, J. Trébosc, J.P. Amoureux, F. Deng, Proton-proton homonuclear dipolar decoupling in solid state NMR using rotor-synchronized z-rotation pulse sequences, J. Chem. Phys. 130 (2009) 014504.
- [32] S. Paul, D. Schnider, P.K. Madhu, ¹H homonuclear dipolar decoupling using symmetry-based pulse sequences at ultra fast magic-angle spinning frequencies, J. Magn. Reson. 206 (2010) 241–245.
- [33] M. Leskes, S. Steuernagel, D. Schneider, P.K. Madhu, S. Vega, Homonuclear dipolar decoupling at magic-angle spinning frequencies up to 65 kHz in solidstate nuclear magnetic resonance, Chem. Phys. Lett. 466 (2008) 95–99.
- [34] L. Mafra, R. Siegel, C. Fernandez, D. Schneider, F. Aussenac, J. Rocha, Highresolution ¹H homonuclear dipolar recoupling NMR spectra of biological solids at MAS rates up to 67 kHz, J. Magn. Reson. 199 (2009) 111–114.
- [35] D. Sakellariou, A. Lesage, P. Hodgkinson, L. Emsley, Homonuclear dipolar decoupling in solid-state NMR using continuous phase modulation, Chem. Phys. Lett. 319 (2000) 253–260.
- [36] A. Lesage, D. Sakellariou, S. Hediger, B. Elena, P. Charmont, S. Steuernagel, L. Emsley, Experimental aspects of proton NMR spectroscopy in solids using phase-modulated homonuclear dipolar decoupling, J. Magn. Reson. 162 (2003) 105–113.
- [37] B. Elena, G. de Paeepe, L. Emsley, Direct spectral optimization of proton-proton homonuclear dipolar decoupling in solid-state NMR, Chem. Phys. Lett. 398 (2004) 532–538.
- [38] E. Salager, R.S. Stein, S. Steuernagel, A. Lesage, B. Elena, L. Emsley, Enhanced sensitivity in high-resolution ¹H solid-state NMR spectroscopy with DUMBO dipolar decoupling under ultra-fast MAS, Chem. Phys. Lett. 469 (2009) 336– 341.
- [39] M. Leskes, P.K. Madhu, S. Vega, Why does PMLG proton decoupling work at 65 kHz MAS?, J Magn. Reson. 199 (2009) 208–213.
- [40] E. Salager, J.-N. Dumez, R.S. Stein, S. Steuernagel, A. Lesage, B. Elena-Herrmann, L. Emsley, Homonuclear dipolar decoupling with very large scaling factors for high-resolution ultra-fast magic angle spinning ¹H solid-state NMR spectroscopy, Chem. Phys. Lett. 498 (2010) 214–220.
- [41] Z. Gan, P.K. Madhu, J.-P. Amoureux, J. Trebosc, O. Lafon, A tunable homonuclear dipolar decoupling scheme for high-resolution proton NMR of solids from slow to fast magic-angle spinning, Chem. Phys. Lett. 503 (2011) 167–170.
- [42] M. Mehring, J.S. Waugh, Magic-angle NMR experiments in solids, Phys. Rev. B 5 (1972) 3459–3471.
- [43] M.H. Levitt, A.C. Kolbert, A. Bielecki, D.J. Ruben, High-resolution ¹H NMR in solids with frequency-switched multiple-pulse sequences, Solid State Nucl. Magn. Reson. 2 (1993) 151–163.
- [44] K. Yamauchi, S. Kuroki, I. Ando, The amide proton NMR chemical shift and hydrogen-bonded structure of glycine-containing peptides and polypeptides in the solid state as studies by multi-pulse-associated high-speed MAS ¹H NMR, J. Mol. Struct. 602–603 (2002) 9–16.
- [45] E. Vinogradov, P.K. Madhu, S. Vega, Proton spectroscopy in solid state nuclear magnetic resonance with windowed phase modulated Lee–Goldburg decoupling sequences, Chem. Phys. Lett. 354 (2002) 193–202.
- [46] M. Leskes, P.K. Madhu, S. Vega, A broad-banded z-rotation windowed phasemodulated Lee–Goldburg pulse sequence for ¹H spectroscopy in solid-state NMR, Chem. Phys. Lett. 447 (2007) 370–374.
- [47] M. Leskes, P.K. Madhu, S. Vega, Super-cycled homonuclear dipolar decoupling in solid-state NMR: toward cleaner ¹H spectrum and higher spinning rates, J. Chem. Phys. 128 (2008) 052309.
- [48] S. Paul, R.S. Thakur, M. Goswami, A.C. Sauerwein, S. Mamone, M. Concistre, H. Forster, M.H. Levitt, P.K. Madhu, Super-cycled homonuclear dipolar decoupling sequences in solid-state NMR, J. Magn. Reson. 197 (2009) 14–19.
- [49] M. Leskes, P.K. Madhu, S. Vega, Proton line narrowing in solid-state nuclear magnetic resonance: new insights from windowed phase-modulated Lee-Goldburg sequence, J. Chem. Phys. 125 (2006) 124506.
- [50] K. Mao, J.W. Wiench, V.S.Y. Lin, M. Pruski, Indirectly detected throughbond chemical shift correlation NMR spectroscopy in solids under fast MAS: studies of organic-inorganic hybrid materials, J. Magn. Reson. 196 (2009) 92– 95.
- [51] K. Mao, M. Pruski, Directly and indirectly detected through-bond heteronuclear correlation solid-state NMR spectroscopy under fast MAS, J. Magn. Reson. 201 (2009) 165–174.
- [52] G.P. Holland, B.R. Cherry, J.E. Jenkins, J.L. Yarger, Proton-detected heteronuclear single quantum correlation NMR spectroscopy in rigid solids with ultra-fast MAS, J. Magn. Reson. 202 (2010) 64–71.
- [53] A. Lesage, D. Sakellariou, S. Steuernagel, L. Emsley, Carbon-Proton chemical shift correlation in solid-state NMR by through-bond multiple-quantum spectroscopy, J. Am. Chem. Soc. 120 (1998) 13194–13201.
- [54] K. Mao, M. Pruski, Homonuclear dipolar decoupling under fast MAS: resolution patterns and simple optimization strategy, J. Magn. Reson. 203 (2010) 144– 149.
- [55] V.E. Zorin, M. Ernst, S.P. Brown, P. Hodgkinson, Insights into homonuclear decoupling from efficient numerical simulation: techniques and examples, J. Magn. Reson. 192 (2008) 183–196.
- [56] E. Vinogradov, P.K. Madhu, S. Vega, Phase modulated Lee–Goldburg magic angle spinning proton nuclear magnetic resonance experiments in the solidstate: a bimodal Floquet theory treatment, J. Chem. Phys. 115 (2001) 8983– 9000.

- [57] A. Brinkmann, A.P.M. Kentgens, Proton-selective ¹⁷O-¹H distance measurements in fast magic-angle-spinning solid-state NMR spectroscopy for the determination of hydrogen bond lengths, J. Am. Chem. Soc. 128 (2006) 14758–14759.
- [58] O. Lafon, Q. Wang, B. Hu, F. Vasconcelos, J. Trébosc, S. Cristol, F. Deng, J.-P. Amoureux, Indirect detection via spin-1/2 nuclei in solid state NMR spectroscopy: application to the observation of proximities between protons and quadrupolar nuclei, J. Phys. Chem. A 113 (2009) 12864–12878.
- [59] L. Chen, Q. Wang, B. Hu, O. Lafon, J. Trébosc, F. Deng, J.-P. Amoureux, Measurement of hetero-nuclear distances using a symmetry-based pulse sequence in solid-state NMR, Phys. Chem. Chem. Phys. 12 (2010) 9395–9405.
- [60] J. Trébosc, O. Lafon, B. Hu, J.-P. Amoureux, Indirect high-resolution detection for quadrupolar spin-3/2 nuclei in dipolar HMQC solid-state NMR experiments, Chem. Phys. Lett. 496 (2010) 201–207.
- [61] J.-P. Amoureux, J. Trébosc, J. Wiench, M. Pruski, HMQC and refocused-INEPT experiments involving half-integer quadrupolar nuclei in solids, J. Magn. Reson 184 (2006) 1–14.
- [62] Q. Wang, X. Lu, O. Lafon, J. Trébosc, F. Deng, B. Hu, Q. Chen, J.-P. Amoureux, Measurement of ¹³C-¹H dipolar couplings in solids by using ultra-fast magicangle spinning NMR spectroscopy with symmetry-based sequences, Phys. Chem. Chem. Phys. 13 (2011) 5967–5973.